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Thanks for the 
invitation


(I miss the amazing food in Mexico)

Tacos al Pastor in Coyoacán with 
C. Lopez Monsalvo in 2015



Overview

Motivation: GW observations, IMBHs, EMRIs

Status of modelling black hole binaries

Non-linear black hole perturbation theory

New results that shed light on what counts as ‘small’?

Gravitational waves from small 
mass-ratio binaries



Why are we interested in small mass-ratio binaries?

GW190814: merger of 23  black hole with a 2.6  compact object
M⊙ M⊙

Mass ratio of ~ 9:1. Is this a small mass-ratio binary?



Why are we interested in small mass-ratio binaries?

GW190521: a binary black hole (BBH) with total mass 150 
M⊙

The first confirmed detection of an intermediate-mass black hole



Why are we interested in small mass-ratio binaries?
With IMBHs confirmed to exist, this raises the possibility of intermediate mass-ratio 
inspirals (IMRIs). These are binaries with mass-ratios in the range of 102 − 104 : 1

Simulation (by Steve Drasco) of 2000:1 mass-ratio binary where the primary has 
a mass of  and the secondary has the mass of a neutron star.3000M⊙



EMRIs are a key source for LISA

We can also have stellar-mass compact objects falling onto a massive black hole. 
These binaries are called extreme mass-ratio inspirals (EMRIs)

Why are we interested in small mass-ratio binaries?



Extreme mass-ratio inspirals

Image credit: A. Pound

• Binary with an extremely small  
mass ratio 


• Primary: massive black hole

• Secondary: compact object such as a 

stellar-mass black hole, neutron star

• For LISA EMRIs: -

ϵ = m2/m1 ≪ 1

ϵ = 10−4 10−7

Key Features:

• Millihertz gravitational-wave source

• Over 100,000+ orbits in strong field

• Visible for months to years in LISA band

• No spin alignment expected

• Considerable eccentricity

• Rich waveform phenomenology

• Very low instantaneous SNR in LISA

m2

m1



Approaches to modelling the two-body problem

Credit: Leor Barack
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Coverage of numerical relativity waveforms

A NR waveform like above has ~40 cycles and takes months to compute on 
a supercomputer with hundreds of processing cores
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Black Hole Perturbation Theory

gαβ = ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ + 𝒪(ϵ3)

Image credit: A. Pound

Use mass ratio, , as an expansion parameter and expand the 
metric of the binary about the metric of the primary

ϵ = m2/m1

Model secondary as a point particle

Tαβ = m2 ∫
∞

∞
| ḡ |−1/2 δ4(xμ − zμ)uαuβ dτ

Gαβ[g] = 8πTαβSubstitute into the Einstein equation and expand order-by-order

Equations of motion: uβ ∇βuα = Fα
self[h; z]

Schwarzschild or Kerr

Self-force

m1

m2



Black Hole Perturbation Theory

(m1, a)

m2

uβ ∇βuα = 0
uβ ∇βuα = Fα

self[h; z]

The force at a given instance depends 
upon the local metric perturbation, 

which is a functional of the entire past 
history of the particle

zμ(τ)
xμ

Fα
self[zμ(τ)] = lim

xμ→zμ(τ)
F[∇αh(xμ)]

As defined here, this diverges in the 
limit. Thus we need to regularize

Light cone about field point xμ



Defining the self-force: regular/singular split

Image credit: A. Pound

m1

Regularization precisely defined through matched asymptotic expansions

- outer expansion: treat 
field of  as the 
background


- inner expansion: treat the 
field of  as the 
background


- in buffer region: feed 
information from the inner 
to the outer expansion

m1

m2

m1

m2

m2

For more details see: arXiv:gr-qc/9606018, arXiv:gr-qc/9610053, arXiv:1102.0529, arXiv:1201.5089, arXiv:1203.3189



Defining the self-force: regular/singular split
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Fα
self[zμ(τ)] = lim

xμ→zμ(τ)
Fα[∇αhR]The self-force depends on the derivative 


of the regular metric perturbation

hret hS hR

Through the matched expansion we can define (locally) a singular piece of the metric 
perturbation and a regular piece

Rarely have the exact singular field, rather just a local approximation, which we call the 
puncture field hP



Needed for precision tests of GR
Potential application to IMRIs

Two contributions: 
• Oscillatory pieces of the first 

order self-force 
• Second-order orbit averaged 

self-force ⟨Fα
2 ⟩

Needed to extract all sources

Post-Adiabatic order

Black Hole Perturbation Theory
A key question in any perturbative expansion is: how high in the expansion do I 

need to go in order to capture the physics I am interested in?

Good enough for detection and 
rough parameter estimation for 
astrophysics of EMRIs of bright 
sources

From the orbit averaged piece 
of first-order self-force ⟨Fα

1 ⟩

        can be related to the 
fluxes, thus avoiding a local 
calculation of the self-force

⟨Fα
1 ⟩

Adiabatic 

Waveform phase: Φ(t) = ϵ−1Φ−1(t) + ϵ0Φ0(t) + 𝒪(ϵ)



Black Hole Perturbation Theory: field equations

Gαβ[ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ ] = 8πTαβ

ϵ0 : Gαβ[ḡ] = 0

ϵ1 : G1
αβ[h1] = 8πTαβ

ϵ2 : G1
αβ[h2] + G2

αβ[h1, h1] = 0

Field equations from  coefficients:ϵn

Linearized Einstein operator

G1
αβ = ∂2

t − ∂2
r* + …

≡ □



Black Hole Perturbation Theory: field equations

Gαβ[ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ ] = 8πTαβ

ϵ1 : □ h1 = 8πT

ϵ2 : □ h2 + G2[h1, h1] = 0

Field equations from ϵn coefficients:



Black Hole Perturbation Theory: field equations

Gαβ[ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ ] = 8πTαβ

Field equations from ϵn coefficients:

ϵ1 : □ h1 = 8πT

ϵ2 : □ h2 = − G2[h1, h1]



Black Hole Perturbation Theory: field equations

Field equations from ϵn coefficients:

Gαβ[ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ ] = 8πTαβ

ϵ1 : □ (h1R + h1P) = 8πT

ϵ2 : □ (h2R + h2P) = − G2[h1, h1]



Black Hole Perturbation Theory: field equations

Field equations from ϵn coefficients:

Gαβ[ḡαβ + ϵh(1)
αβ + ϵ2h(2)

αβ ] = 8πTαβ

ϵ1 : □ h1R = 8πT − □h1P

ϵ2 : □ h2R = − G2[h1, h1] − □h2P

Usual point particle source

□ = ∂2
t − ∂2

r* + …
Crux:  
   - Pound (2012)*  
   - Gralla (2012)

*Pound, Phys. Rev. Lett. 109, 051101 (2012)

- Non-compact
- Diverges at the particle

Equations of motion take the form:
D2zμ

dτ
= ϵF1μ[hR1] + ϵ2F2μ[hR2]

Additional challenges:

- but PDE Lorenz gauge field equations have never been stably evolved
- singular field known in Lorenz gauge ∇αh̄αβ = 0



Many additional steps
- Move into frequency domain via a two-timescale expansion. We 

define a slow time  and fast time t̃ = ϵt ϕp

□ω = □0
ω + ϵ □1

ω

- Effective-source in frequency domain methods

- Challenges on large length scales

- Challenges constructing 

- For more details see recording of talk by Adam Pound at the 

Capra meeting for Radiation Reaction: https://
www.youtube.com/watch?v=gQd2CsH4vug

G2
ω[h1, h1]

□0
ω h1 = T1

□0
ω hR2 = G2

ω[h1, h1] − □0
ωhP2 − □1

ωh1

□0
ω = − ∂2

r* − m2Ω2
0 + …

Effective-source

For further details see: arXiv:1201.5089, arXiv:1206.6538, arXiv:1311.3104, arXiv:1404.1543, arXiv:1505.07841, 
arXiv:1510.05172, arXiv:1608.06783, arXiv:1703.02836, arXiv:1908.07419, arXiv:2006.11263

∂
∂t

=
∂ϕp

∂t
∂

∂ϕp
+

∂t̃
∂t

∂
∂t̃

= Ω
∂

∂ϕp
+ ϵ

∂
∂t̃ ⟹

https://www.youtube.com/watch?v=gQd2CsH4vug
https://www.youtube.com/watch?v=gQd2CsH4vug
https://www.youtube.com/watch?v=gQd2CsH4vug


Results at first-order in the mass-ratio

ϵ1 : □ h1R = 8πT − □h1P

- We have known how to compute  since 1997. It took ~20 years 
to compute the  for generic motion about a Kerr black hole [van 
de Meet, arXiv:1711.09607]

h1P

h1R

- We have just started to explore the situation when 
the secondary is spinning (more on this later) 
[arXiv:1912.09461, 2004.02654]



Results at first-order in the mass-ratio

ϵ1 : □ h1R = 8πT − □h1P

- We can also solve the equations of motion and compute the 
inspiral trajectory and the associated waveform


- Recent work has shown how to compute waveforms with 100’s of 
thousands of cycles in milliseconds using neutral network and GPU 
techniques [arXiv:2008.06071]



New results at second-order in the mass-ratio
The remainder of this talk will focus on brand new (unpublished) 

results from calculations at second-order in the mass-ratio

ϵ1 : □ h1R = 8πT − □h1P

ϵ2 : □ h2R = − G2[h1, h1] − □h2P

- The main challenge is computing the source to the second-order equation

- We will start with the simplest binary 
configuration: quasi-circular inspirals 
into a Schwarzschild black hole

-30 -20 -10 10 20 30

-30

-20

-10
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20

30

- Within the two-timescale framework we 
can solve the above field equation and 
compute the GW flux ℱ(r0)



Expansion in the symmetric mass ratio
So far we have been expanding using the small mass-ratio ϵ = m2/m1

Let’s also introduce the large mass-ratio  and the 
symmetric mass-ratio:

q = m1/m2 = 1/ϵ

ν =
m1m2

M2
=

q
(1 + q)2 where M = m1 + m2

Also instead of parametrising the orbit by  we will use  r0 x = (MΩ)2/3

ℱ(r0, ϵ) = ϵ2ℱ(1)(r0) + ϵ3ℱ(2)(r0) + O(ϵ4)

Using these definitions we can rewrite

 the form

ℱ(x, ν) = ν2ℱ(1)
ν (x) + ν3ℱ(2)

ν (x) + O(ν4)

where    ℱ(1)
ν = ℱ(1), ℱ(2)

ν = ℱ(2)
ν (ℱ(1), ℱ(2), dℱ(1)/dx)



Comparison with post-Newtonian theory
For this talk, let’s look at the  model = 3, m = 1

ℱPN
31 = ( ν2

1260
−

ν3

315 ) x6 + (−
4ν2

945
+

ν3

63
+

4ν4

945 ) x7 + ( πν2

630
−

2πν3

315 ) x15/2 + O(x8)

The (3,3) and (3,1) fluxes were derived to 3.5 PN order in Faye+ arXiv:1409.3546

We want to compare agains the  pieces of thisO(v3)

ℱ(2)PN
31 = −

x6

315
+

x7

63
−

2
315

πx15/2 −
1291x8

31185
+

13
420

πx17/2

+x9 ( 26 log(x)
6615

−
389π2

120960
+

52γ
6615

−
117030737
7945938000

−
log2(1024)

7875
+

4 log2(2)
315

+
52 log(2)

6615 ) + O(x19/2)

This is all the known terms at  for the (3,1) mode up to 3.5PNO(ν3)



Comparison with post-Newtonian theory

ℱ(2)PN
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Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory

ℱ(2)PN
31 = −

x6

315
+

x7

63
−

2
315

πx15/2 −
1291x8

31185
+

13
420

πx17/2

+x9 ( 26 log(x)
6615

−
389π2

120960
+

52γ
6615

−
117030737
7945938000

−
log2(1024)

7875
+

4 log2(2)
315

+
52 log(2)

6615 ) + O(x19/2)

0.02 0.05 0.10 0.20

10-17

10-15

10-13

10-11

10-9

10-7

x=(M �)2/3

�
�(2
)

(l,m)=(3,1)



Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory

ℱ(2)PN
31 = −
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Comparison with numerical relativity
For this comparison it’s useful to consider the flux normalised by the leading PN 
coefficient, e.g., for the (2,2) PN flux we have

ℱ̂PN
22 =

ℱPN
22

ℱ0PN
22

= 1 +
1
21

(55ν − 107)x + 4πx3/2 + O (x2)

ℱPN
22 =

32ν2x5

5
+

32
105

ν2(55ν − 107)x6 +
128
5

πν2x13/2 + O (x7)

To compute the NR flux we write the waveform as hlm(t) = Alm(t)eiΦlm(t)

ℱNR
lm (t) =

1
16π

| ·hlm(t) |2 x(t) = (M ·Φ(t)/m)2/3

From these two we can compute ℱNR
lm (x)

h+ h�
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Comparison with numerical relativity

3.5PN
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3.5PN series from Faye+ arXiv:1204.1043



Comparison with numerical relativity

3.5PN

SXS:BBH:1107
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Comparison with numerical relativity

3.5PN

SXS:BBH:1107

1GSF
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Comparison with numerical relativity

3.5PN

SXS:BBH:1107

1GSF

2GSF
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3.5PN series from Faye+ arXiv:1204.1043 NR data from SXS:BBH:1132

2GSF result by NW, B. Wardell, A. Pound and J. Miller (2020 in prep)



Comparison with numerical relativity

NR data from SXS:BBH:1132

Equal mass binaries: q = 1, ν = 1/4

3.5PN
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Comparison with numerical relativity
Higher modes
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Comparison with numerical relativity
Higher modes

Why does the second-order flux not compare well against NR for the (4,4)-mode?

ℱPN,leading
44 =

8192
567 (ν2 − 6ν3+9ν4) x7

Compare this with the PN series for the (2,2)-mode:

ℱPN
22 =

32ν2x5

5
+

32
105

ν2(55ν − 107)x6 +
128
5

πν2x13/2 +
8 (19136ν2 − 87691ν3+23404ν4) x7

6615
+ O (x15/2)

ℱ2GSF,resum
44 = [ ν2ℱ1GSFν

44 + ν3ℱ2GSFν
44

ℱPN,leading
44

+ O(ν4)] ℱPN,leading
44

This ensures that  ℱ̂2GSF,resum
44 = 1 + …

We can try a simple resummation to include some  information from the PN series νn≥4



Comparison with numerical relativity
Higher modes
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Comparison with numerical relativity
Higher modes

3.5PN

SXS:BBH:1107
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Comparison with numerical relativity
Higher modes

�lm
2GSF�

�lm
2GSF�,resum
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Pure 2GSF comparison with NR worsens for higher -modes

- suggests that 2GSF comparison will be worse for orbits with lots of power 

in higher modes, e.g., highly eccentric or strong-field Kerr orbits

(l, m)

But… higher modes contribute less to the total flux and it seems a simple 
resummation can give large improvements



Spinning secondary results

gαβ = ḡαβ+ϵh(1)
αβ +ϵ2h(2)

αβ + 𝒪(ϵ3)

Schwarzschild or Kerr

For the second-order calculation, when we expanded the metric of the binary we 
did so about a Schwarzschild primary

To model a spinning primary will be a lot more work. One major reason for this is that 
we need to change gauge as the Lorenz gauge is not separable in Kerr spacetime.

But we can model the spin on the secondary within the pole-dipole approximation

ϵ = m2/m1, σ ≡ S2/(m1m2)

gαβ = ḡαβ+ϵh(1)
αβ + σϵh(1σ)

αβ +ϵ2h(2)
αβ + 𝒪(ϵ3)

For self-force calculations the most relevant case is , which describes a 
compact secondary such as a black hole or neutron star

ϵ ∼ σ



Spinning secondary results

The equations of motion become the self-forced Mathisson-Papapetrou-Dixon 
(MPD) equations of motion:

uβ ∇βuα = Fα
self−force[h

R; z] −
1
2

Rα
βγδu

βSγδ

uβ ∇βSγδ = τγδ
self−torque[h

R; z]

where  is the spin tensor for the secondary. In the following we have chose a spin-
supplementary condition, and linearise in the spin of the secondary.

Sγδ

We solved the field equations, computed the flux and local force, and derived the 
balance law, in Phys. Rev. D 102, 064013, arXiv:1912.09461

T (0)αβ(x) = ∫ dτ
δ4(xμ − zμ(τ))

−g
uα(τ)uβ(τ),

T (σ)αβ(x) = ∫ dτ∇δ( δ4(xμ − zμ(τ))
−g ) u(α(τ)S̃β)δ(τ) .

Also expand the stress energy tensor 
:Tαβ = ϵT(0)

αβ + ϵσT(σ)
αβ + 𝒪(ϵ2)



Spinning secondary results
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Spinning secondary results

PN (no spin)
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Adding the spin-flux from arXiv:1912.09461 we again see nice agreement with an 
NR waveform even at q=6.3



Summary

We will observe many more small mass-ratio binaries 
with future GW detectors


We need good waveform models for these binaries


It looks promising that (second-order) perturbation 
theory can model binaries up to  (at least when 
the primary is not spinning and the orbit is circular)


Future work: the waveform (which we will compute in 
milliseconds)

q ∼ 10

For further details on 2GSF see: arXiv:1201.5089, arXiv:1206.6538, arXiv:1311.3104, arXiv:1404.1543, arXiv:1505.07841, 
arXiv:1510.05172, arXiv:1608.06783, arXiv:1703.02836, arXiv:1908.07419; details on spinning flux: arXiv:1912.09461


