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Overview

Gravitational waves from small
mass-ratio binaries

¥ Motivation: GW observations, IMBHs, EMRIs
% Status of modelling black hole binaries
% Non-linear black hole perturbation theory

¥ New results that shed light on what counts as ‘small’?



Why are we interested in small mass-ratio binaries?
Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190814: merger of 23 MQ black hole with a 2.6 MQ compact object

Mass ratio of ~ 9:1. Is this a small mass-ratio binary?



Why are we interested in small mass-ratio binaries?
Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190521: a binary black hole (BBH) with total mass 150 M,

The first confirmed detection of an intermediate-mass black hole




Why are we interested in small mass-ratio binaries?

With IMBHs confirmed to exist, this raises the possibility of intermediate mass-ratio
inspirals (IMRIs). These are binaries with mass-ratios in the range of 10 — 10% : 1

Simulation (by Steve Drasco) of 2000:1 mass-ratio binary where the primary has
a mass of 3000M , and the secondary has the mass of a neutron star.



Why are we interested in small mass-ratio binaries?

We can also have stellar-mass compact objects falling onto a massive black hole.
These binaries are called extreme mass-ratio inspirals (EMRIs)
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Extreme mass-ratio inspirals

 Binary with an extremely small

mass ratio € = m,/m; < 1

* Primary: massive black hole

» Secondary: compact object such as a
stellar-mass black hole, neutron star

. For LISA EMRIs: € = 10~*-10~"

Image credit: A. Pound

Key Features:

- Millihertz gravitational-wave source

« Over 100,000+ orbits in strong field

* Visible for months to years in LISA band
* No spin alignment expected

« Considerable eccentricity

« Rich waveform phenomenology

« Very low instantaneous SNR in LISA




Approaches to modelling the two-body problem

o0

Separation —»

Perturbation theory,

Numerical Relativity self-force

Mass ratio —» 0

Credit: Leor Barack



Coverage of numerical relativity waveforms
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A NR waveform like above has ~40 cycles and takes months to compute on
a supercomputer with hundreds of processing cores



Black Hole Perturbation Theory

Use mass ratio, € = mz/ml, as an expansion parameter and expand the
metric of the binary about the metric of the primary

8ap = Bap T €N + €77 + O(e?)

Schwarzschild or Kerr

Model secondary as a point particle

a

Tos = mZJ 13|71 6% (xH — M uugde

Image credit: A. Pound

Substitute into the Einstein equation Gaﬁ[g ] — SﬂTaﬁ and expand order-by-order

Equations of motion:  7;” Vﬂua — Fsaelf[h; 7] Self-force

~__



Black Hole Perturbation Theory

MﬁVﬂua — Fgelf[h’Z]
» uﬂVﬂu“ =0

The force at a given instance depends
upon the local metric perturbation,
which is a functional of the entire past
nistory of the particle

Light cone about field point x*
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Fodz, (@] = lim F[V*h(x*)]

xt—zH(7)

As defined here, this diverges in the
limit. Thus we need to regularize



Defining the self-force: regular/singular split

Regularization precisely defined through matched asymptotic expansions

- outer expansion: treat
field of m, as the

background | e

- inner expansion: treat the Inner region
field of m, as the (5 ~mz)
background buffer

- in buffer region: feed n—
information from the inner external universe (s ~ my)
to the outer expansion Image credit: A. Pound

For more details see: arXiv:gr-qc/9606018, arXiv:gr-qc/9610053, arXiv:1102.0529, arXiv:1201.5089, arXiv:1203.3189



Defining the self-force: regular/singular split

Through the matched expansion we can define (locally) a singular piece of the metric
perturbation and a regular piece

| horet2 | hOS o o ]/;RQ

The self-force depends on the derivative a l [z (7)] = lim F%[V? hR]
of the regular metric perturbation self=H xH—7H(7)

Rarely have the exact singular field, rather just a local approximation, which we call the
puncture field h*



Black Hole Perturbation Theory

A key question in any perturbative expansion is: how high in the expansion do |
need to go in order to capture the physics | am interested in?

Waveform phase: (I)(t) — € I(CI) (t) + qu)o(t)]‘k @(6)

Post Adiabatic order
From the orbit averaged p|eA

SOurces

Two contributions:

of first-order self-force (Fy’) e Oscillatory pieces of the first

. order selt-force
(FY') can be relgtgd to the e Second-order orbit averaged
fluxes, thus avoiding a local self-force (F2)
calculation of the self-force 2
Good enough for detection and Needed to extract 2!l sources
rough parameter estimation for .
astrophysics of EMRIs of bright \Ieedeld for pr.eC|§|on esls or e

Qtennal application to |IVIRls /




Black Hole Perturbation Theory: field equations

Goplap + €h) + €2h )] = 81T,

Field equations from € coefficients:

e’ Gulgl =0
e' . [G,Jhn'] = 8T,

2 . 2 2 1 117 —
e.h]+Gaﬁ[h,h]_O

Linearized Einstein operator

I _ {2 2
Gly=02— P + ...




Black Hole Perturbation Theory: field equations

Goplap + €h) + €2h )] = 81T,
Field equations from en coefficients:
el : [(1h! = 8aT
€ A%+ G*[h,h'1 =0



Black Hole Perturbation Theory: field equations

Goplap + €h) + €2h )] = 81T,
Field equations from en coefficients:
el : [(1h! = 8aT
€” [(1h* = — G*[h', ']



Black Hole Perturbation Theory: field equations

Goplap + €h) + €2h )] = 81T,
Field equations from en coefficients:
el A h'R+ h'Py = 82T
62 : D(th n h2P) — Gz[hl,hl]



Black Hole Perturbation Theory: field equations

G oplZap + eh<1> + e2h<2>] = 81T,

. . . | poin rticl r
Field equations from en coefficients: Usual point particle source

61 : Dth: 8— [hlp

R=—G[n",n"] - Oh?P

- Non-compact Crux:
- Diverges at the particle - Pound (2012)"
- Gralla (2012)
D?z"
Equations of motion take the form: y = eFH[hR + 2 F?# R
T

Additional challenges:
- singular field known in Lorenz gauge Vi, =0

- but PDE Lorenz gauge field equations have never been stably evolved

*Pound, Phys. Rev. Lett. 109, 051101 (2012)



Many additional steps

- Move into frequency domain via a two-timescale expansion. We
define a slow time 7 = et and fast time ¢,
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For further details see: arXiv:1201.5089, arXiv:1206.6538, arXiv:1311.3104, arXiv:1404.1543, arXiv:1505.07841,

0 — R —mPQ2 4 ...

Effective-source in frequency domain methods

Challenges on large length scales
Challenges constructing Gf)[hl, h'

For more details see recording of talk by Adam Pound at the

Capra meeting for Radiation Reaction: https://

www.youtube.com/watch?v=gQd2CsH4vug

arXiv:1510.05172, arXiv:1608.06783, arXiv:1703.02836, arXiv:1908.07419, arXiv:2006.11263



https://www.youtube.com/watch?v=gQd2CsH4vug
https://www.youtube.com/watch?v=gQd2CsH4vug
https://www.youtube.com/watch?v=gQd2CsH4vug

Results at first-order in the mass-ratio

el - (AR = 8xT — [1h'F

- We have known how to compute h'f since 1997. It took ~20 years

to compute the h'% for generic motion about a Kerr black hole [van
de Meet, arXiv:1711.09607]
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- We have just started to explore the situation when
the secondary is spinning (more on this later)
[arXiv:1912.09461, 2004.02654]




Results at first-order in the mass-ratio

el - [1h'R = 8T — [Jh!'F

- We can also solve the equations of motion and compute the
inspiral trajectory and the associated waveform
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- Recent work has shown how to compute waveforms with 100’s of
thousands of cycles in milliseconds using neutral network and GPU
techniques [arXiv:2008.06071]
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New results at second-order in the mass-ratio

The remainder of this talk will focus on brand new (unpublished)
results from calculations at second-order in the mass-ratio

€

€

1.

N h!'® = 8xT — Jh'"

2 .

thR — Gz[hl,hl] _ rh2P

- The main challenge is computing the source to the second-order equation

- We will start with the simplest binary
configuration: quasi-circular inspirals
into a Schwarzschild black hole

- Within the two-timescale framework we
can solve the above field equation and

compute the GW flux & (r)




Expansion in the symmetric mass ratio

So far we have been expanding using the small mass-ratio € = m,/m,

Let’s also introduce the large mass-ratio g = m;/m, = 1/¢ and the
symmetric mass-ratio:
mm; q

UV = = —
M2 (1 +a) where M = m; + m,

Also instead of parametrising the orbit by 7, we will use x = (MQ)*?

Using these definitions we can rewrite

F(ry,€) = e FD(ry) + € F D (1) + O(e)
the form

) 1 3 2 4
F(x,V) =1 5’/71(/ (X)) + v 3‘72 (%) + O™

where F=gW F& = g@FMh g@ q7z0)qx)



Comparison with post-Newtonian theory

For this talk, let’s look at the [ = 3, m = 1 mode
The (3,3) and (3,1) fluxes were derived to 3.5 PN order in Faye+ arXiv:1409.3546

9?{\’: U2 _v3 64 _4v2+y3+4v4 N 7w2_27w3 x15/2+0(x8)
1260 315 945 63 945 630 315

We want to compare agains the O(v3) pieces of this

FQPN _ _ x° + x! _ 2 o152 _ 1291x° n 13 172
31 315 63 315 31185 = 420
9 26log(x)  389z° . 52y 117030737 _1og2(1024) +410g2(2) +5210g(2) O
6615 120960 6615 7945938000 7875 315 6615

This is all the known terms at O(v°>) for the (3,1) mode up to 3.5PN



Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory
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Comparison with post-Newtonian theory
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Comparison with numerical relativity

For this comparison it’s useful to consider the flux normalised by the leading PN
coefficient, e.g., for the (2,2) PN flux we have

32020 32 128

5’/755 = + v*(55v — 107)x% + —m2x 32 + 0 (x7)
5 105 5
oz PN
FEN — 7 I+ L(551/ —107)x + 4nx*? + O (xz)
22~ gOPN 71

22

To compute the NR flux we write the waveform as #,,(f) = Alm(t)eiq’lm(t)

0.10p h, h.
0.05¢

o O

-0.05¢
~0.10t SXS:BBH:1107, q=10

0 1000 2000 3000 4000 5000 6000 7000
M

FND = —— V) X(t) = (M) /m)>

From these two we can compute gé\;f(x)



Comparison with numerical relativity
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Comparison with numerical relativity
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Comparison with numerical relativity
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Comparison with numerical relativity

0.94
| — 3.5PN ©
0.92} — SXS:BBH:1107 § 3
| o
| ~ 1GSF B s
_ g =
0.90} . 2GSF e
i C
(-
i IS
T, 0.88
E\ Y.

o
@)
o
IO L U WSt U N

_ q=10
0.84¢ v=0.0826
' (,m)=(2,2)
0.82!. e
0.05 0.10 0.15
x=(Mor Q)%
3.5PN series from Faye+ arXiv:1204.1043 NR data from SXS:BBH:1132

2GSF result by NW, B. Wardell, A. Pound and J. Miller (2020 in prep)



Comparison with numerical relativity

Equal mass binaries: g = 1, v =1/4
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Comparison with numerical relativity

Higher modes
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Comparison with numerical relativity

Higher modes

Why does the second-order flux not compare well against NR for the (4,4)-mode?

gfvPN,lmding — 8192

2 .3 4\ 7
14 s (v 6v +9v)x

Compare this with the PN series for the (2,2)-mode:

3202 32 128 8 (1913612 — 876911°+234041%) x”
Fi = i v*(55v — 107)x® + —mv?x 12 + ( )
5 105 5 6615

+0 <X15/2)

n>4 .

We can try a simple resummation to include some v information from the PN series

[ 2cz1GSFu |, 32GSFu |
gZGSF,resum — v ’/r44 TV Jr44 4+ 0(1/4) gPN,leading
44 PN leading 44
l 44 _

This ensures that LO;‘”rifSF”’eS’“‘m =14...



Comparison with numerical relativity

Higher modes

3.5PN
SXS:BBH:1107
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circular orbit
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Comparison with numerical relativity

Higher modes
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Comparison with numerical relativity

Higher modes
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Pure 2GSF comparison with NR worsens for higher (/, m)-modes
- suggests that 2GSF comparison will be worse for orbits with lots of power
In higher modes, e.g., highly eccentric or strong-field Kerr orbits

But... higher modes contribute less to the total flux and it seems a simple
resummation can give large improvements



Spinning secondary results

For the second-order calculation, when we expanded the metric of the binary we
did so about a Schwarzschild primary

8ap = Bapteh ) +e’h ) + O(€”)
Schwarzschild or Kerr

To model a spinning primary will be a lot more work. One major reason for this is that
we need to change gauge as the Lorenz gauge is not separable in Kerr spacetime.

But we can model the spin on the secondary within the pole-dipole approximation

€ = mz/ml, o = Sz/(mlmz)

For self-force calculations the most relevant case is € ~ o, which describes a
compact secondary such as a black hole or neutron star

— 5 1 1 27,2 3
8ap = Bapteh) + och) V+e’h) + O(€’)



Spinning secondary results
5t — (1))

TO () = | dr u®(0)ul(v),
Also expand the stress energy tensor J vV 8
T ;= €TV + 6T + O(?): : 4
O (xH — z# .
i b p T@b(x) = | dzV 5< A Q) > u*(0)SP(1).
vV —8

where S7° is the spin tensor for the secondary. In the following we have chose a spin-
supplementary condition, and linearise in the spin of the secondary.

The equations of motion become the self-forced Mathisson-Papapetrou-Dixon
(MPD) equations of motion:

1
— R. )
7 Vﬁua — F;lf—force[h 2l = ERaﬁmwBSy
p ¥o _ Y0 R.
U VﬁS o Tself torque[h ]

We solved the field equations, computed the flux and local force, and derived the
balance law, in Phys. Rev. D 102, 064013, arXiv:1912.09461



Spinning secondary results
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Spinning secondary results
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Adding the spin-flux from arXiv:1912.09461 we again see nice agreement with an
NR waveform even at g=6.3



Summary

¥ We will observe many more small mass-ratio binaries
with future GW detectors

¥ We need good waveform models for these binaries

% It looks promising that (second-order) perturbation

theory can model binaries up to g ~ 10 (at least when
the primary is not spinning and the orbit is circular)

% Future work: the waveform (which we will compute in
milliseconds)

For further details on 2GSF see: arXiv:1201.5089, arXiv:1206.6538, arXiv:1311.3104, arXiv:1404.1543, arXiv:1505.07841,
arXiv:1510.05172, arXiv:1608.06783, arXiv:1703.02836, arXiv:1908.07419; details on spinning flux: arXiv:1912.09461



